aisentry Report

Generated: 2026-01-12 12:40:27 UTC

10
Combined Security Score
2
Vulnerability Score
18
Security Posture
1034
Files Scanned
9
Issues Found
64%
Confidence
4.2s
Scan Time

Vulnerabilities (9)

Critical decision without oversight in 'sync_main'
LLM09: Overreliance INFO
/private/tmp/openai-python-test/examples/azure_ad.py:17
Function 'sync_main' on line 17 makes critical security decisions based on LLM output without human oversight or verification. No action edges detected - advisory only.
def sync_main() -> None: from azure.identity import DefaultAzureCredential, get_bearer_token_provider token_provider: AzureADTokenProvider = get_bearer_token_provider(DefaultAzureCredential(), scopes)
Remediation
Critical security decision requires human oversight: 1. Implement human-in-the-loop review: - Add review queue for high-stakes decisions - Require explicit human approval before execution - Log all decisions for audit trail 2. Add verification mechanisms: - Cross-reference with trusted sources - Implement multi-step verification - Use confidence thresholds 3. Include safety checks: - Set limits on transaction amounts - Require secondary confirmation - Implement rollback mechanisms 4. Add disclaimers: - Inform users output may be incorrect - Recommend professional consultation - Document limitations clearly 5. Monitor and review: - Track decision outcomes - Review failures and near-misses - Continuously improve safeguards
LLM output flows to command_injection sink
LLM02: Insecure Output Handling CRITICAL
/private/tmp/openai-python-test/src/openai/resources/beta/threads/threads.py:792
LLM output variable 'run' flows to 'self.runs.poll' on line 792 via direct flow. This creates a command_injection vulnerability.
) return self.runs.poll(run.id, run.thread_id, extra_headers, extra_query, extra_body, timeout, poll_interval_ms) # pyright: ignore[reportDeprecated] @overload
Remediation
Mitigations for Command Injection: 1. Never pass LLM output to shell commands 2. Use subprocess with shell=False and list arguments 3. Apply allowlist validation for expected values 4. Use shlex.quote() if shell execution is unavoidable
Insecure tool function 'create_and_run_poll' executes dangerous operations
LLM07: Insecure Plugin Design HIGH
/private/tmp/openai-python-test/src/openai/resources/beta/threads/threads.py:739
Tool function 'create_and_run_poll' on line 739 takes LLM output as a parameter and performs dangerous operations (http_request) without proper validation. Attackers can craft malicious LLM outputs to execute arbitrary commands, access files, or perform SQL injection.
stream=stream or False, stream_cls=Stream[AssistantStreamEvent], ) def create_and_run_poll( self, *, assistant_id: str, instructions: Optional[str] | Omit = omit, max_completion_tokens: Optional[int] | Omit = omit,
Remediation
Secure Tool/Plugin Implementation: 1. NEVER execute shell commands from LLM output directly 2. Use allowlists for permitted commands/operations 3. Validate all file paths against allowed directories 4. Use parameterized queries - never raw SQL from LLM 5. Validate URLs against allowlist before HTTP requests 6. Implement strict input schemas (JSON Schema, Pydantic) 7. Add rate limiting and request throttling 8. Log all tool invocations for audit 9. Use principle of least privilege 10. Implement human-in-the-loop for destructive operations
Insecure tool function 'create_and_run_stream' executes dangerous operations
LLM07: Insecure Plugin Design HIGH
/private/tmp/openai-python-test/src/openai/resources/beta/threads/threads.py:795
Tool function 'create_and_run_stream' on line 795 takes LLM output as a parameter and performs dangerous operations (http_request) without proper validation. Attackers can craft malicious LLM outputs to execute arbitrary commands, access files, or perform SQL injection.
) return self.runs.poll(run.id, run.thread_id, extra_headers, extra_query, extra_body, timeout, poll_interval_ms) # pyright: ignore[reportDeprecated] @overload def create_and_run_stream( self, *, assistant_id: str, instructions: Optional[str] | Omit = omit, max_completion_tokens: Optional[int] | Omit = omit,
Remediation
Secure Tool/Plugin Implementation: 1. NEVER execute shell commands from LLM output directly 2. Use allowlists for permitted commands/operations 3. Validate all file paths against allowed directories 4. Use parameterized queries - never raw SQL from LLM 5. Validate URLs against allowlist before HTTP requests 6. Implement strict input schemas (JSON Schema, Pydantic) 7. Add rate limiting and request throttling 8. Log all tool invocations for audit 9. Use principle of least privilege 10. Implement human-in-the-loop for destructive operations
Insecure tool function 'create_and_run_stream' executes dangerous operations
LLM07: Insecure Plugin Design HIGH
/private/tmp/openai-python-test/src/openai/resources/beta/threads/threads.py:824
Tool function 'create_and_run_stream' on line 824 takes LLM output as a parameter and performs dangerous operations (http_request) without proper validation. Attackers can craft malicious LLM outputs to execute arbitrary commands, access files, or perform SQL injection.
"""Create a thread and stream the run back""" ... @overload def create_and_run_stream( self, *, assistant_id: str, instructions: Optional[str] | Omit = omit, max_completion_tokens: Optional[int] | Omit = omit,
Remediation
Secure Tool/Plugin Implementation: 1. NEVER execute shell commands from LLM output directly 2. Use allowlists for permitted commands/operations 3. Validate all file paths against allowed directories 4. Use parameterized queries - never raw SQL from LLM 5. Validate URLs against allowlist before HTTP requests 6. Implement strict input schemas (JSON Schema, Pydantic) 7. Add rate limiting and request throttling 8. Log all tool invocations for audit 9. Use principle of least privilege 10. Implement human-in-the-loop for destructive operations
Insecure tool function 'create_and_run_stream' executes dangerous operations
LLM07: Insecure Plugin Design HIGH
/private/tmp/openai-python-test/src/openai/resources/beta/threads/threads.py:853
Tool function 'create_and_run_stream' on line 853 takes LLM output as a parameter and performs dangerous operations (http_request) without proper validation. Attackers can craft malicious LLM outputs to execute arbitrary commands, access files, or perform SQL injection.
) -> AssistantStreamManager[AssistantEventHandlerT]: """Create a thread and stream the run back""" ... def create_and_run_stream( self, *, assistant_id: str, instructions: Optional[str] | Omit = omit, max_completion_tokens: Optional[int] | Omit = omit,
Remediation
Secure Tool/Plugin Implementation: 1. NEVER execute shell commands from LLM output directly 2. Use allowlists for permitted commands/operations 3. Validate all file paths against allowed directories 4. Use parameterized queries - never raw SQL from LLM 5. Validate URLs against allowlist before HTTP requests 6. Implement strict input schemas (JSON Schema, Pydantic) 7. Add rate limiting and request throttling 8. Log all tool invocations for audit 9. Use principle of least privilege 10. Implement human-in-the-loop for destructive operations
Insecure tool function 'create_and_run_stream' executes dangerous operations
LLM07: Insecure Plugin Design HIGH
/private/tmp/openai-python-test/src/openai/resources/beta/threads/threads.py:1655
Tool function 'create_and_run_stream' on line 1655 takes LLM output as a parameter and performs dangerous operations (http_request) without proper validation. Attackers can craft malicious LLM outputs to execute arbitrary commands, access files, or perform SQL injection.
run.id, run.thread_id, extra_headers, extra_query, extra_body, timeout, poll_interval_ms ) @overload def create_and_run_stream( self, *, assistant_id: str, instructions: Optional[str] | Omit = omit, max_completion_tokens: Optional[int] | Omit = omit,
Remediation
Secure Tool/Plugin Implementation: 1. NEVER execute shell commands from LLM output directly 2. Use allowlists for permitted commands/operations 3. Validate all file paths against allowed directories 4. Use parameterized queries - never raw SQL from LLM 5. Validate URLs against allowlist before HTTP requests 6. Implement strict input schemas (JSON Schema, Pydantic) 7. Add rate limiting and request throttling 8. Log all tool invocations for audit 9. Use principle of least privilege 10. Implement human-in-the-loop for destructive operations
Insecure tool function 'create_and_run_stream' executes dangerous operations
LLM07: Insecure Plugin Design HIGH
/private/tmp/openai-python-test/src/openai/resources/beta/threads/threads.py:1684
Tool function 'create_and_run_stream' on line 1684 takes LLM output as a parameter and performs dangerous operations (http_request) without proper validation. Attackers can craft malicious LLM outputs to execute arbitrary commands, access files, or perform SQL injection.
"""Create a thread and stream the run back""" ... @overload def create_and_run_stream( self, *, assistant_id: str, instructions: Optional[str] | Omit = omit, max_completion_tokens: Optional[int] | Omit = omit,
Remediation
Secure Tool/Plugin Implementation: 1. NEVER execute shell commands from LLM output directly 2. Use allowlists for permitted commands/operations 3. Validate all file paths against allowed directories 4. Use parameterized queries - never raw SQL from LLM 5. Validate URLs against allowlist before HTTP requests 6. Implement strict input schemas (JSON Schema, Pydantic) 7. Add rate limiting and request throttling 8. Log all tool invocations for audit 9. Use principle of least privilege 10. Implement human-in-the-loop for destructive operations
Insecure tool function 'create_and_run_stream' executes dangerous operations
LLM07: Insecure Plugin Design HIGH
/private/tmp/openai-python-test/src/openai/resources/beta/threads/threads.py:1713
Tool function 'create_and_run_stream' on line 1713 takes LLM output as a parameter and performs dangerous operations (http_request) without proper validation. Attackers can craft malicious LLM outputs to execute arbitrary commands, access files, or perform SQL injection.
) -> AsyncAssistantStreamManager[AsyncAssistantEventHandlerT]: """Create a thread and stream the run back""" ... def create_and_run_stream( self, *, assistant_id: str, instructions: Optional[str] | Omit = omit, max_completion_tokens: Optional[int] | Omit = omit,
Remediation
Secure Tool/Plugin Implementation: 1. NEVER execute shell commands from LLM output directly 2. Use allowlists for permitted commands/operations 3. Validate all file paths against allowed directories 4. Use parameterized queries - never raw SQL from LLM 5. Validate URLs against allowlist before HTTP requests 6. Implement strict input schemas (JSON Schema, Pydantic) 7. Add rate limiting and request throttling 8. Log all tool invocations for audit 9. Use principle of least privilege 10. Implement human-in-the-loop for destructive operations
18
Overall Score
Initial
18
Controls Detected
of 61
1155
Files Analyzed
92
Total Recommendations

Category Scores

Prompt Security
22/100
  • Prompt Sanitization Intermediate
  • Rate Limiting Missing
  • Input Validation Advanced
  • Output Filtering Intermediate
  • Context Window Protection Missing
  • Red Team Testing Missing
  • Prompt Anomaly Detection Missing
  • System Prompt Protection Missing
3 Detected 0 Partial 5 Missing
Model Security
9/100
  • Access Control Missing
  • Model Versioning Missing
  • Dependency Scanning Missing
  • API Security Missing
  • Model Source Verification Advanced
  • Differential Privacy Missing
  • Model Watermarking Missing
  • Secure Model Loading Missing
1 Detected 0 Partial 7 Missing
Data Privacy
12/100
  • PII Detection Missing
  • Data Redaction Missing
  • Data Encryption Intermediate
  • Audit Logging Intermediate
  • Consent Management Missing
  • NER PII Detection Missing
  • Data Retention Policy Missing
  • GDPR Compliance Missing
2 Detected 0 Partial 6 Missing
OWASP LLM Top 10
25/100
  • LLM01: Prompt Injection Defense Advanced
  • LLM02: Insecure Output Handling Partial
  • LLM03: Training Data Poisoning Missing
  • LLM04: Model Denial of Service Missing
  • LLM05: Supply Chain Vulnerabilities Partial
  • LLM06: Sensitive Information Disclosure Missing
  • LLM07: Insecure Plugin Design Advanced
  • LLM08: Excessive Agency Missing
  • LLM09: Overreliance Intermediate
  • LLM10: Model Theft Missing
3 Detected 2 Partial 5 Missing
Blue Team Operations
18/100
  • Model Monitoring Intermediate
  • Drift Detection Missing
  • Anomaly Detection Missing
  • Adversarial Attack Detection Missing
  • AI Incident Response Missing
  • Model Drift Monitoring Missing
  • Data Quality Monitoring Advanced
2 Detected 0 Partial 5 Missing
AI Governance
0/100
  • Model Explainability Missing
  • Bias Detection Missing
  • Model Documentation Missing
  • Compliance Tracking Missing
  • Human Oversight Missing
0 Detected 0 Partial 5 Missing
Supply Chain Security
25/100
  • Dependency Scanning Missing
  • Model Provenance Tracking Missing
  • Model Integrity Verification Advanced
1 Detected 0 Partial 2 Missing
Hallucination Mitigation
35/100
  • RAG Implementation Intermediate
  • Confidence Scoring Missing
  • Source Attribution Intermediate
  • Temperature Control Missing
  • Fact Checking Advanced
3 Detected 0 Partial 2 Missing
Ethical AI & Bias
12/100
  • Fairness Metrics Missing
  • Model Explainability Intermediate
  • Bias Testing Missing
  • Model Cards Missing
1 Detected 0 Partial 3 Missing
Incident Response
0/100
  • Monitoring Integration Missing
  • Audit Logging Missing
  • Rollback Capability Missing
0 Detected 0 Partial 3 Missing

All Recommendations (92)

Rate Limiting
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

Context Window Protection
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

Red Team Testing
Audit critical

Detection failed: 'ConfigAnalyzer' object has no attribute 'file_exists'

Prompt Anomaly Detection
Audit critical

Implement statistical analysis on prompt patterns

Prompt Anomaly Detection
Audit critical

Use ML-based anomaly detection for unusual inputs

Prompt Anomaly Detection
Audit critical

Set up alerts for prompt anomaly detection

System Prompt Protection
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

Access Control
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

Model Versioning
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

Dependency Scanning
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

API Security
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

Differential Privacy
Audit critical

Use Opacus or TensorFlow Privacy for differential privacy

Differential Privacy
Audit critical

Implement privacy budgets for model queries

Differential Privacy
Audit critical

Monitor epsilon values for privacy guarantees

Model Watermarking
Audit critical

Implement watermarking for model outputs

Model Watermarking
Audit critical

Use cryptographic watermarks for model weights

Model Watermarking
Audit critical

Track watermark verification for model theft detection

Secure Model Loading
Audit critical

Use safetensors instead of pickle for model weights

Secure Model Loading
Audit critical

Set weights_only=True when using torch.load

Secure Model Loading
Audit critical

Validate model files before loading

PII Detection
Audit critical

Use Presidio or similar for PII detection

PII Detection
Audit critical

Implement NER-based PII detection with spaCy

PII Detection
Audit critical

Add custom regex patterns for domain-specific PII

Data Redaction
Audit critical

Implement data masking for sensitive fields

Data Redaction
Audit critical

Use tokenization for reversible anonymization

Data Redaction
Audit critical

Apply redaction before logging or storage

Consent Management
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

NER PII Detection
Audit critical

Use Presidio or SpaCy for NER-based PII detection

NER PII Detection
Audit critical

Implement custom NER models for domain-specific PII

NER PII Detection
Audit critical

Run PII detection on all inputs and outputs

Data Retention Policy
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

GDPR Compliance
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

LLM03: Training Data Poisoning
Audit critical

Implement data validation pipelines

LLM03: Training Data Poisoning
Audit critical

Verify data source integrity

LLM03: Training Data Poisoning
Audit critical

Monitor for anomalies in training data

LLM04: Model Denial of Service
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

LLM06: Sensitive Information Disclosure
Audit critical

Implement PII detection and filtering

LLM06: Sensitive Information Disclosure
Audit critical

Never include secrets in prompts

LLM06: Sensitive Information Disclosure
Audit critical

Add output filtering for sensitive patterns

LLM08: Excessive Agency
Audit critical

Implement human-in-the-loop for critical actions

LLM08: Excessive Agency
Audit critical

Use principle of least privilege for LLM access

LLM08: Excessive Agency
Audit critical

Add approval workflows for sensitive operations

LLM10: Model Theft
Audit critical

Implement rate limiting on API endpoints

LLM10: Model Theft
Audit critical

Add query logging and anomaly detection

LLM10: Model Theft
Audit critical

Monitor for extraction patterns

Drift Detection
Audit critical

Implement drift detection with evidently or alibi-detect

Drift Detection
Audit critical

Monitor input data distribution changes

Drift Detection
Audit critical

Set up automated alerts for drift events

Anomaly Detection
Audit critical

Implement anomaly detection on model inputs

Anomaly Detection
Audit critical

Monitor for unusual query patterns

Anomaly Detection
Audit critical

Use statistical methods or ML-based detection

Adversarial Attack Detection
Audit critical

Implement adversarial input detection

Adversarial Attack Detection
Audit critical

Use adversarial robustness toolkits

Adversarial Attack Detection
Audit critical

Add input perturbation analysis

AI Incident Response
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

Model Drift Monitoring
Audit critical

Use Evidently or alibi-detect for drift monitoring

Model Drift Monitoring
Audit critical

Set up automated alerts for significant drift

Model Drift Monitoring
Audit critical

Implement automatic retraining pipelines

Model Explainability
Audit critical

Use SHAP or LIME for model explanations

Model Explainability
Audit critical

Provide decision explanations in outputs

Model Explainability
Audit critical

Implement feature attribution tracking

Bias Detection
Audit critical

Use Fairlearn or AIF360 for bias detection

Bias Detection
Audit critical

Implement fairness metrics tracking

Bias Detection
Audit critical

Test for demographic parity and equalized odds

Model Documentation
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

Compliance Tracking
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

Human Oversight
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

Dependency Scanning
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

Model Provenance Tracking
Audit critical

Use MLflow, DVC, or Weights & Biases for model tracking

Model Provenance Tracking
Audit critical

Implement model versioning with metadata

Model Provenance Tracking
Audit critical

Maintain model registry with provenance information

Confidence Scoring
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

Temperature Control
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

Fairness Metrics
Audit critical

Use Fairlearn or AIF360 for fairness metrics

Fairness Metrics
Audit critical

Implement demographic parity testing

Fairness Metrics
Audit critical

Monitor fairness metrics in production

Bias Testing
Audit critical

Implement adversarial testing for bias

Bias Testing
Audit critical

Test across demographic groups

Bias Testing
Audit critical

Use TextAttack or CheckList for NLP bias testing

Model Cards
Audit critical

Detection failed: 'ConfigAnalyzer' object has no attribute 'file_exists'

Monitoring Integration
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

Audit Logging
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

Rollback Capability
Audit critical

Detection failed: 'bool' object has no attribute 'lower'

LLM output flows to command_injection sink/private/tmp/openai-python-test/src/openai/resources/beta/threads/threads.py:792
Scan critical

Mitigations for Command Injection: 1. Never pass LLM output to shell commands 2. Use subprocess with shell=False and list arguments 3. Apply allowlist validation for expected values 4. Use shlex.quote() if shell execution is unavoidable

Insecure tool function 'create_and_run_poll' executes dangerous operations/private/tmp/openai-python-test/src/openai/resources/beta/threads/threads.py:739
Scan high

Secure Tool/Plugin Implementation: 1. NEVER execute shell commands from LLM output directly 2. Use allowlists for permitted commands/operations 3. Validate all file paths against allowed directories 4. Use parameterized queries - never raw SQL from LLM 5. Validate URLs against allowlist before HTTP requests 6. Implement strict input schemas (JSON Schema, Pydantic) 7. Add rate limiting and request throttling 8. Log all tool invocations for audit 9. Use principle of least privilege 10. Implement human-in-the-loop for destructive operations

Insecure tool function 'create_and_run_stream' executes dangerous operations/private/tmp/openai-python-test/src/openai/resources/beta/threads/threads.py:795
Scan high

Secure Tool/Plugin Implementation: 1. NEVER execute shell commands from LLM output directly 2. Use allowlists for permitted commands/operations 3. Validate all file paths against allowed directories 4. Use parameterized queries - never raw SQL from LLM 5. Validate URLs against allowlist before HTTP requests 6. Implement strict input schemas (JSON Schema, Pydantic) 7. Add rate limiting and request throttling 8. Log all tool invocations for audit 9. Use principle of least privilege 10. Implement human-in-the-loop for destructive operations

Insecure tool function 'create_and_run_stream' executes dangerous operations/private/tmp/openai-python-test/src/openai/resources/beta/threads/threads.py:824
Scan high

Secure Tool/Plugin Implementation: 1. NEVER execute shell commands from LLM output directly 2. Use allowlists for permitted commands/operations 3. Validate all file paths against allowed directories 4. Use parameterized queries - never raw SQL from LLM 5. Validate URLs against allowlist before HTTP requests 6. Implement strict input schemas (JSON Schema, Pydantic) 7. Add rate limiting and request throttling 8. Log all tool invocations for audit 9. Use principle of least privilege 10. Implement human-in-the-loop for destructive operations

Insecure tool function 'create_and_run_stream' executes dangerous operations/private/tmp/openai-python-test/src/openai/resources/beta/threads/threads.py:853
Scan high

Secure Tool/Plugin Implementation: 1. NEVER execute shell commands from LLM output directly 2. Use allowlists for permitted commands/operations 3. Validate all file paths against allowed directories 4. Use parameterized queries - never raw SQL from LLM 5. Validate URLs against allowlist before HTTP requests 6. Implement strict input schemas (JSON Schema, Pydantic) 7. Add rate limiting and request throttling 8. Log all tool invocations for audit 9. Use principle of least privilege 10. Implement human-in-the-loop for destructive operations

Insecure tool function 'create_and_run_stream' executes dangerous operations/private/tmp/openai-python-test/src/openai/resources/beta/threads/threads.py:1655
Scan high

Secure Tool/Plugin Implementation: 1. NEVER execute shell commands from LLM output directly 2. Use allowlists for permitted commands/operations 3. Validate all file paths against allowed directories 4. Use parameterized queries - never raw SQL from LLM 5. Validate URLs against allowlist before HTTP requests 6. Implement strict input schemas (JSON Schema, Pydantic) 7. Add rate limiting and request throttling 8. Log all tool invocations for audit 9. Use principle of least privilege 10. Implement human-in-the-loop for destructive operations

Insecure tool function 'create_and_run_stream' executes dangerous operations/private/tmp/openai-python-test/src/openai/resources/beta/threads/threads.py:1684
Scan high

Secure Tool/Plugin Implementation: 1. NEVER execute shell commands from LLM output directly 2. Use allowlists for permitted commands/operations 3. Validate all file paths against allowed directories 4. Use parameterized queries - never raw SQL from LLM 5. Validate URLs against allowlist before HTTP requests 6. Implement strict input schemas (JSON Schema, Pydantic) 7. Add rate limiting and request throttling 8. Log all tool invocations for audit 9. Use principle of least privilege 10. Implement human-in-the-loop for destructive operations

Insecure tool function 'create_and_run_stream' executes dangerous operations/private/tmp/openai-python-test/src/openai/resources/beta/threads/threads.py:1713
Scan high

Secure Tool/Plugin Implementation: 1. NEVER execute shell commands from LLM output directly 2. Use allowlists for permitted commands/operations 3. Validate all file paths against allowed directories 4. Use parameterized queries - never raw SQL from LLM 5. Validate URLs against allowlist before HTTP requests 6. Implement strict input schemas (JSON Schema, Pydantic) 7. Add rate limiting and request throttling 8. Log all tool invocations for audit 9. Use principle of least privilege 10. Implement human-in-the-loop for destructive operations

Critical decision without oversight in 'sync_main'/private/tmp/openai-python-test/examples/azure_ad.py:17
Scan low

Critical security decision requires human oversight: 1. Implement human-in-the-loop review: - Add review queue for high-stakes decisions - Require explicit human approval before execution - Log all decisions for audit trail 2. Add verification mechanisms: - Cross-reference with trusted sources - Implement multi-step verification - Use confidence thresholds 3. Include safety checks: - Set limits on transaction amounts - Require secondary confirmation - Implement rollback mechanisms 4. Add disclaimers: - Inform users output may be incorrect - Recommend professional consultation - Document limitations clearly 5. Monitor and review: - Track decision outcomes - Review failures and near-misses - Continuously improve safeguards